skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Hedrick, James L"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Organocatalyzed ring-opening polymerization (ROP) is a versatile technique for synthesizing biodegradable polymers, including polyesters and polycarbonates. We introduce o-phenylene bisurea (OPBU) (di)anions as a novel class of organocatalysts that are fast, easily tunable, mildly basic, and exceptionally selective. These catalysts surpass previous generations, such as thiourea, urea, and TBD, in selectivity (kp/ktr) by 8 to 120 times. OPBU catalysts facilitate the ROP of various monomers, achieving high conversions (>95%) in seconds to minutes, producing polymers with precise molecular weights and very low dispersities (Đ ≈ 1.01). This performance nearly matches the ideal distribution expected from living polymerization (Poisson distribution). Density functional theory (DFT) calculations reveal that the catalysts stabilize the oxyanion transition state via a hydrogen bond pocket similar to the "oxyanion hole" in enzymatic catalysis. Both experimental and theoretical analyses highlight the critical role of the semi-rigid o-phenylene linker in creating a hydrogen bond pocket that is tight yet flexible enough to accommodate the oxyanion transition state effectively. These new insights have provided a new class of organic catalysts whose accessibility, moderate basicity, excellent solubility, and unparalleled selectivity and tunability open up new opportunities for controlled polymer synthesis. 
    more » « less
  2. A library of structurally related heterocycles containing N-H motifs are explored as ring-opening polymerization (ROP) pre-catalysts. Upon deprotonation of these heterocycles with appropriate bases, corresponding salts are formed, which catalyze the ROP of various lactones and cyclic carbonates, affording polymers with dispersity values ranging from 1.01 to 1.12. These catalysts exhibit a wide range of catalytic activities, spanning over seven orders of magnitude (>107), with their relative rates generally correlating to the pKa of the N-H group in the neutral heterocycle. Despite apparent structural and electronic similarities, these heterocycle catalysts display markedly different kinetic behaviors regarding the identity of different cations. Kinetic and NMR studies have revealed two distinct sets of mechanisms: small alkali metal cations such as Li+ and Na+ reduce the activity of imidazol(in)e derived catalysts due to their tendency to associate with the alkoxide chain-end, thus inhibiting its propagation; conversely, these cations form robust cation-π assemblies with indolocarbazole anions, simultaneously binding and activating monomer carbonyls towards the nucleophilic attack, resulting in a significant rate enhancement. This distinctive activation motif of the indolocarbazole sets it apart from other catalysts by utilizing cations as a potent handle for modulating polymerization reactivity. Coupled with its high availability, good solubility, high activity, moderate basicity, and high selectivity, the indolocarbazole heterocycle emerges as one of the most versatile organocatalysts for ring-opening polymerization. 
    more » « less
  3. Rowan, Stuart J (Ed.)
    Organocatalyzed ring-opening polymerization is a powerful tool for the synthesis of a variety of functional readily degradable polyesters and polycarbonates. We report the use of (thio)ureas in combination with cyclopropenimine bases as unique catalyst for the polymerization of cyclic esters and carbonates with a large span of reactivities. Methodologies of exceptionally effective and selective cocatalyst combinations were devised to produce polyesters and polycarbonates with narrow dispersity (Đ = 1.01 – 1.10). Correlations of the pKa of the various ureas and cyclopropenimine bases revealed the critical importance of matching the pKa of the two cocatalysts to achieve the most efficient polymerization conditions. It was found that promoting strong H-bonding interactions with a noncompetitive organic solvent, such as CH2Cl2, enabled greatly accelerated polymerization rates. The stereoselective polymerization of rac-lactide afforded stereoblock poly(lactides) that crystallize as stereocomplexes, as confirmed by wide-angle x-ray scattering. 
    more » « less
  4. null (Ed.)